Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0239410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32956386

RESUMO

The today's competitive advantage of ready-made garment industry depends on the ability to improve the efficiency and effectiveness of resource utilization. Ready-made garment industry has long historically adopted fewer technological and process advancement as compared to automotive, electronics and semiconductor industries. Simulation modeling of garment assembly line has attracted a number of researchers as one way for insightful analysis of the system behaviour and improving its performance. However, most of simulation studies have considered ill-defined experimental design which cannot fully explore the assembly line design alternatives and does not uncover the interaction effects of the input variables. Simulation metamodeling is an approach to assembly line design which has recently been of interest to researchers. However, its application in garment assembly line design has never been well explored. In this paper, simulation metamodeling of trouser assembly line with 72 operations was demonstrated. The linear regression metamodel technique with resolution-V design was used. The effects of five factors: bundle size, job release policy, task assignment pattern, machine number and helper number on throughput of the trouser assembly line were studied. An increase of the production throughput by 28.63% was achieved for the best factors' setting of the metamodel.


Assuntos
Vestuário/estatística & dados numéricos , Indústrias/estatística & dados numéricos , Modelos Estatísticos , Modelos Lineares , Tecnologia
2.
ACS Appl Mater Interfaces ; 11(14): 13370-13379, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888142

RESUMO

Remote, rapid, and ink-free printing/erasure on fabrics has great potential to revolutionize specialized clothing in numerous applications including fashion/aesthetic and security fields, but the construction of such smart fabrics has not been realized due to underlying obstacles in obtaining suitable photoreversible color-switching systems (PCSS). To address this problem, we have prepared TiO2- x nanorods as photocatalytic and photothermal component. With redox dyes as reversible color indicators and hydroxyethyl cellulose (HEC) as polymer matrix, TiO2- x/dye/HEC-based PCSS is coated on poly(dimethylsiloxane)-treated cotton fabric. Under 365 nm light irradiation, discoloration occurs in 180 s, resulting from the efficient photocatalytic reduction of the dye. On the contrary, when the colorless fabric is irradiated by 808 nm light, recoloration occurs in a very short time (∼100 s), far lower than the traditional heating mode (30-8 min at 90-150 °C). This rapid recoloration should be attributed to the localized high temperature (164.3-184.5 °C) induced by photothermal effect of TiO2- x. Particularly, when TiO2- x/dye/HEC-based PCSS is extended to coat commercial clothes (such as T-shirts), red/green/blue figures/letters can be rapidly and remotely printed by UV-light pen and then erased by near-infrared light, with high cycle stability. Therefore, such rewritable smart fabric represents an attractive alternative to regular clothes in meeting the increasing aesthetic or camouflage needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...